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THEORETICAL ANALYSIS OF THE m E P  COLLAPSE OF COLUMNS 

By Floyd R .  Schlechte 

SUMMARY 

A theoretical analysis is made of the creep collapse of idealized 
H-section columns and solid rectangular-section columns by the applica- 
tion of a creep variational theorem. For the rectangular-section columns 
two assumptions are considered. In one case the stress distribution 
through the thickness is assumed to be linear. In the other case this 
stress distribution is allowed to take a nonlinear form. Charts are 
given for the critical lifetime parameters based on these various 
theories. 

Comparisons are made between the theories for the rectangular- 
section columns and previously published test data. The comparisons 
indicate that the linear-stress theory gives nearly the same result as 
the nonlinear-stress theory. In addition, the refinement in stress 
distribution does not always improve the comparisons between theory 
and test. In many cases, the results obtained from the isochronous- 
tangent-modulus method are about as good as the results obtained from 
the more involved theoretical methods. 

., 

INTRODUCTION 

The phenomenon of aerodynamic heating associated with the use of 
high-speed airplanes and missiles has motivated a number of studies of 
materials and structures at elevated temperatures. Among these studies 
are attempts to relate material creep properties to the creep behavior 
of structural compression elements. The present paper is concerned with 
this problem in regard to column behavior. 

Design procedures are available for creep buckling. Methods which 
are entirely empirical predominate and ordinarily use static-buckling 
criteria with the tangent modulus replaced by its equivalent from isoch- 
ronous stress-strain curves. Other approaches usually lead to methods 
which trace the displacement history starting with an initial 
imperfection. I 
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Many papers have been written on column creep buckling. Results of 
a number of elevated-temperature creep tests on rectangular-section 
columns made of aluminum alloys are given in references 1 to 4. 
to data in these papers, column lifetimes of apparently identical columns 
under identical loads may differ by a factor of two or three. Such wide 
scatter increases the difficulty of making clear-cut comparisons between 
theory and experiment. 

-. According 

The theoretical column-creep analyses presented in references 5 
to 8 are displacement-type analyses. 
behavior of an idealized H-section column is analyzed by using a power 
creep law and tabulated results for column lifetime parameters are given. 
In references 7 and 8, H-section and solid rectangular-section columns 
are anaiyzed by using an exponential creep law which was modified in an 
attempt to account for creep behavior under varying stress. 
displacement-type analyses, the differential equations were derived 
directly from statics. The length coordinate of the column was eliminated 
by assuming a deflected shape and by satisf'ying the differential equations 
at the column midheight only. 

In references 5 and 6 the creep 

In all these 

Approximate solutions which satisfy basic equations on an average 
over a region are obtained when variational methods are used. 
tional theorem applicable to creep of columns is presented in reference 9. 
It yields as Euler equations the time derivatives of static equations of 
equilibrium, stress-strain relations, and boundary conditions. This var- 
iational theorem is analogous to the theorem for elasticity given in ref- 
erences 10 and 11. 
theorem is presented which starts with the theorem of references 10 
and 11; in addition, the H-section column is analyzed in reference 12 
by using the theorem, and little difference is found between the results 
obtained from the variational theorem and previous work in references 5 
and 6 done by collocation. 

One varia- 

In reference 12 a derivation of this creep variational 

The present paper is a further application of the creep variational 
theorem of reference 9 to the analysis of creep behavior of columns. 
The theorem is applied to a solid rectangular-section column in which 
a nonlinear stress distribution is permitted through the thickness. 
For comparison, solutions are also presented for the idealized H-section 
column and the rectangular-section column in which the stress distribu- 
tion is constrained to remain linear through the thickness. Also 
included for purposes of comparison is an engineering method - the 
so-called isochronous-tangent-modulus method. 
experimental data on column-creep tests and material creep properties 
from references 1 to 4 are included in a comparison with theory. The 
investi,,a.tion was carried out to determine whether these various 
refinemeats improve the agreement between theory and experiment. 

Four sets of existing 
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SYMBOLS 

A area of cross section 

numerical-integration coefficient "J 

B constant in creep law 

BP 
A 

B* = - 

b width of rectangular-section column 

c constant in creep law 

nondimensional coordinate for numerical integration 

E Young's modulus 

f( 0) function of stress (see eq. (2)) 

g(t) 

h thickness of rectangular-section column 

hl distance between flanges of idealized H-section column 

function of time (see eq. (2)) 

11 modified Bessel function of first kind 

k constant in creep law 

1 length of column 

N 

n constant in creep law 

P compressive load 

pE 

number of stations through thickness of column 

Euler buckling stress of column 

PT modified Euler buckling stress of column 

s lateral-displacement parameter fo r  rectangular-section 
column, 6BQ 

3 



lateral-displacement parameter for idealized H-section 
column, 2Bw1 

t emperatwe 

time 

displacement coefficient in equation (4) 

displacement of neutral surface in x-direction 

volume 

displacement coefficient in equation ( 3 )  

displacement coefficient in equation (7) 

displacement of column in z-direction, with initial crooked- 
ness included 

coordinates 

dummy integration variables 

Kronecker delta 

strain, positive in tension 

creep strain 

quantity to be varied 

radius of uration 

stress, positive in tension 

average column stress, positive in compression 

difference between stress at a point in column and average 
stress on column.positive in compression 

maximum value of oB for cross section calculated by ( 'B, e lem) m x  
elementary beam theory 
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constant i n  creep l a w  

n 

t i m e  parameter when power l a w  is  used, 
1-, 

t i m e  parameter when hyperbolic s ine l a w  i s  used, 

function of z/hl, defined by equation (6) *(e) 
Subscripts and superscripts: 

c r  c r i t i c a l  

i 7  3 integers  

0 bu i l t - i n  or i n i t i a l  crookedness 

P power creep l a w  

S hyperbolic s ine creep l a w  

X different ia t ion with respect t o  x 

Dots over quant i t ies  denote time derivatives.  

ANALYSIS 

General Discussion 

I n  order t o  exhibi t  the various stages of refinement possible i n  
an analysis of the creep collapse of columns by using var ia t ional  methods, 



several problems are  considered. 
H-section columns and so l id  rectangular-section columns by means of a 
creep variational theorem. The idealized H-section column i s  t reated 
first, and then consideration i s  given t o  a so l id  rectangular-section 
column where the s t r e s s  dis t r ibut ion i s  required t o  vary i n  a l i nea r  
fashion through the column thickness. For both the H-section column 
and the sol id  rectangular-section column, solutions are presented fo r  
the two creep laws - the hyperbolic sine l a w  and the power law. 
the solid rectangular-section column i s  t reated by allowing the s t r e s s  
dis t r ibut ion t o  be nonlinear through the thickness. In  t h i s  case the 
solution using the hyperbolic sine creep l a w  becomes rather  involved, 
and only the solution with the power l a w  i s  carried t o  completion. 
Throughout these analyses the collocation approach has been abandoned 
and has been replaced by the more refined variational theorem. 

The analysis i s  applied t o  idealized 

Finally, 
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A Rayleigh-Ritz procedure is  used i n  conjunction with the creep 
variational theorem of reference 9 .  It i s  assumed that the s t r a i n  dis- 
t r ibut ion through the column thickness i s  l inear .  The load i s  assumed 
t o  be applied quickly enough so that no creep occurs while loading, yet  
slowly enough s o  that dynamic e f fec ts  may be neglected. 
then assumed t o  remain constant u n t i l  the column collapses. The varia- 
t i ona l  theorem s t a t e s  that the expression 

The load i s  

. 

when varied with respect t o  the time derivatives of quantit ies yields  
the desired column creep equations. 

The material creep relat ions used i n  t h i s  report  have the form 

if' = f ( a )  i(t) 

where f ( a )  i s  a function of s t r e s s  alone and g ( t )  i s  a function of 
time alone. These relat ions apply only fo r  constant temperature and 
constant s t r e s s  conditions. In  th i s  investigation, however, it i s  assumed 
that these creep relat ions apply a l so  i n  the case of varying s t r e s s .  
the hyperbolic sine law the function f ( a )  i s  given by 

For 

f ( a )  = C sinh Ba 

where B and C are  material constants. The power l a w  gives f ( a )  as 

n 
f(d = (5) 
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where u* and n are material constants. The function g(t) provides 
an approximate way to account for primary creep. 
made in this investigation, g was taken in the form 

In the calculations 

g(t) = tk 

g(t) = kt k- 1 

where k is a material constant. 

The lateral displacements of the middle surface of the column are 
illustrated in figure l(a). The symbol wo represents the initial 
lateral displacement or initial crookedness of the column. The lateral 
displacement at the instant after load is applied and before creep begins 
is represented by w(0). The symbol w represents the lateral displace- 
ment as creep progresses. The initial crookedness is included in 
and w. 
the displacement shape of the column is given by a sine curve 

w(0) 
It is assumed that a sufficiently accurate approximation to 

The displacements 
are assumed to be 

w = h W(t) sin 
1 ( 3 )  

of points on the neutral surface in the x-direction 
given by 

u = x u(t) (4)  

Consider the 

Idealized H-Section Column 

idealized H-section column shown in figure l(b). This 
A 
2 column has two flanges each of area - separated a distance hl by a 

web flexible in bending in its own plane. The stresses are assumed to 
be given by 

where 

ye) = 0 
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‘The displscements are given by equations (3)  and (4) with h 
replaced by hl and W1. The quantity to be varied becomes 

and W 

(7)  

When t h e  integrations are performed and the nondimensional quantities 

I 
are introduced, equation (7) becomes 

The appropriate equations for the column are obtained by setting equal 
an an -, an ar.d -. an Thus, the ., to zero the partial derivatives 
au aGl’ a60 301 

equations obtained are 

a0 = 0 

1 . 1  - 1  
iOWl 2 + a 1  + aow1 2 = 0 

L 
3 
3 
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If U 
t ions  (loa),  ( lob) ,  and (10d) may be combined with the use of the elas- 
t i c  i n i t i a l  conditions 

i s  not required, equation (1Oc) may be ignored; then, equa- 

t o  form the d i f f e r e n t i a l  equation 

The creep l a w  must 
equation (12). For the  

be prescribed i n  order t o  obtain solutions t o  
hyperbolic sine l a w  which i s  given as 

k S  = ' + &! sinh Ba (13) E 

the function of s t r e s s  i s  

and the required in tegra l  involving t h i s  function i s  

where I1 i s  the modified Bessel function of the f i r s t  kind and 

* BP 
A 

B = -. With use of the nondimensional parameters 
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~1 = 2BjtWi 

2 CB*cosh B* 
7s = (&) P 1 - -  

PE 

equation (12) may be writ ten as 

L 
3 

The time parameter Ts a s  a function of the lateral-displacement param- 8 
e t e r  s 1  i s  

1 r s  = - 

where the parameter sl(0) i s  given by 

The c r i t i c a l  time parameter i s  

1 du 

The integration indicated i n  th i s  equation can be carried out readily 
by numerical methods. 

completeness, although r e su l t s  have been presented already i n  refer-  
ence 1 2 .  The function of s t r e s s  i s  

The analysis for  the power creep l a w  i s  given here f o r  the sake of 

f ( a )  = 

I n  the cases considered herein, n 
i n  order t o  simplify integrations.  
creep law i s  

w i l l  be r e s t r i c t ed  t o  odd integers 
The in tegra l  required w i t h  t h i s  
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The differential equation obtained for the idealized H-section column 
with the power creep law is 

where 

T -  P -  

and the critical time parameter is 

- dW1 

(n - l)l(i + 1)wli 

i=l,3 (n - i)![(+)j 
q 2 

T P, cr - LI(0) 

2 

where W1(0) is given by equation (lla) . Evaluation of the integral in 
equation (25) can be carried out easily for n = 3 and n = 5. Numeri- 
cal integration is more convenient for larger values of n. 

A n  idealized H-section column having the same cross-sectional area 
and moment of inertia as a given rectangular-section column is called an 
equivalent H-section column in this paper. For this case, hl = - h and, 

of course, each flange has one-half the area of the rectangular-section 
column. Note, also, that for the equivalent H-section column W1 = W 

6 
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Solid Rectangular-Section Column With Linear 

Stress Distribution Through the Thiclmess 

Consider a solid rectangular-section column of width b, thickness 
h, and length 2 as shown in figure l(c) . Assume that stress as well 
as strain varies linearly through the thickness. 
assumed to be given by 

The stresses are 

u = - a2 + o3 f sin - 
A p (  

For the stresses given by equation (26) and the displacements given by 
equations (3) and (4),  the quantity to be varied is 

2 2 E A  2 sin2 y]]&x dz 

- 41 0,gL f(a) dV - 6 gL 2 sin f(a) dV 
A A 3  h 2 

After integrations are performed and the functions 
\ 

sin f(u) dV 
' 3 = &  L h  2 

J 
are introduced, equation (27) becomes 



A s  before, the column equations are obtained by equating t o  zero - ~ 

the p a r t i a l  derivatives $, $, a, and a. Thus, the following 
au aw a& I L 

equations a re  obtained: 

J 

I 

1 

I n i t i a l  conditions f o r  t h i s  problem are 

I Equation (30 

w(0) = WO 

a2(o) = -1 

) may be ignored unless the calculation of U i s  desired. 
Equations (30a), (30b), and (3Od) may be combined with equations (31) t o  
give 

When the hyperbolic sine creep l a w  (eq. (13)) i s  used, q3 is  writ ten as 

where 
~* 

2 s in  s[x sinh + 12W 2 s in  
h 

2 h/2 

hZ 2 

= C cosh B* 1 

q3 = J h / 2  

S 

B Il(p) dp 
2s2 

I s = 6B*W 

p = S K  z 

(33) 

(34) 
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and where I l ( p )  
order one. 
in equation (16), equation (32) becomes 

is the modified Bessel flmction of the first kind of 
With the use of equation ( 3 3 )  and the definition for T~ 

6 L S  P IdP) dP 
( 3 9  ds - - -  

dTS S2 

The critical time parameter for the rectangular-section column having 
through the thickness and following the hyper- 

L 
linear stress distribution 
bolic sine creep law is 

where 

When the 

93 = 

- - 

6~*Wo 
P 

s(0) = 
1 - -  

PE 

power creep law is used, 93 is written as 

and equation (32) becomes 

dW = L  f (n - l)!(i + 1)(3W)i 
dTp , cr 2 (n - i)lLy)j2(i + 2) id, 3 

The initial condition is 

3 '  
3 

( 3 6 )  8 

(37)  

(39) 

t 

WO w(0) = - 
PE 
P 1 - -  
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c 

and the critical time parameter is 

Equations (36) and (41) can be solved in the same way as were equa- 
tions (20) and (25) .  

Solid Rectangular-Section Column With Nonlinear Stress 

Distribution Through the Thickness 

In the previous solutions, the shape of the stress distribution 
is fixed from the beginning. For the case treated in this section a 
rectangular-section column is analyzed by allowing the stress distri- 
bution through the thickness to be arbitrary. In the quantity to b? 
varied in the variational theorem (eq. (1)) the integrals throLigh the 
column thickness are replaced by summations corresponding to nunerical 
integrations. The equations which follow are set up on the basis of 
the Gaussian quadrature formula. (See ref. 13.) Similar results would 
be obtained by using other quadrature formulas. 

The z-coordinate distance from the centroidal axis to any station j 
across the thickness is hcj. The stress at a distance hcj from the 

centroidal axis is 

uj = f(u4 + u5j sin g) 2 (42) 

and displacements are given by equations ( 3 )  and (4). 
be varied becomes 

The quantity to 
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where a j  represents the Gaussian quadrature coefficients.  When some 
of the integrations over x are  performed, the r e su l t  i s  

- 6 j + & + j - &  5J & 5J} 

where . 
(44) 

The remainder of the analysis i s  simplified i f  it i s  assumed a t  t h i s  
point that the average s t r e s s  on the cross section i s  independent of 
time; that i s ,  

64 = 0 

and 

a4 = -1 

Equating t o  zero the variation of TI with respect t o  6, W, and 6 5 j  
i s  equivalent t o  equating t o  zero the p a r t i a l  derivatives of 
respect t o  c, W, and irgj.  Use of t h i s  procedure yields  the following 

TI with 

equations: 

L 
3 
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c 

In 5J Equations (46) may be solved for and in terms of rp 

order to accomplish this solution, the following properties of the 
Gaussian quadrature coefficients are used: 

5J 

j=1 

7 ajcj = 0 
U 

(47) 

I j=l  

If equation (46c) (representing N equations) is multiplied by 
aj and summed over j from 1 to N, the result is 

N 

Equations (48) and (46c) may be solved for 
result: 

65j with the following 
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Equation (46b) may be writ ten as 

j=1,2 

With the use of equation (49), equation (50) becomes 

N 

Consequently, equation (49) may be given i n  the form 

(51) L 
3 
3 
8 

If the power l a w  i s  taken as the creep re la t ion ,  the in t eg ra l  
cp 5 j  

i n  equation (52) i s  
8 

4 
i 

With  



equations (51) and ( 5 2 )  become, respectively, 

I n i t i a l  conditions fo r  t h i s  case a re  
\ 

(0) = 1 2 C J W ( O )  u5J 

Equations (55) t o  (57) give N + 1 f i r s t -order  d i f f e r e n t i a l  equa- 
t ions  and t h e i r  i n i t i a l  conditions. These d i f f e r e n t i a l  equations may be 
solved by a numerical method. When N = 2 and Gaussian quadrature 
formulas are used, equations (55) and (56) reduce t o  equation (23) which 
i n  t h i s  case applies t o  an idealized H-section column having the  same 
area and moment of i n e r t i a  as the rectangular section, that  i s ,  the equiv- 
a l en t  H-section column. 

Isochronous-Tangent-Modulus Method 

A n  engineering method which has been used f o r  predicting column 
creep collapse i s  the so-called isochronous-tangent-modulus method. I n  
t h i s  method it i s  assumed tha t  collapse occurs when the s t r e s s  corre- 
sponding t o  the tangent modulus from an isochronous s t r e s s - s t r a in  curve 
becomes equal t o  the average column s t ress .  If the column material fol-  
lows the creep l a w  which i s  given as 

E = a E + f ( a )  g ( t )  ( 5 8 )  

and t h i s  equation i s  d i f fe ren t ia ted  with respect t o  
a t  the average column stress 

U and i s  evaluated 
P/A, the r e s u l t  i s  
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where f' denotes differentiation with respect to P/A. At t = tcr 
according to the isochronous-tangent-modulus method, the result is 

(59) 

where ET 
to t,, at a stress of P/A. 

is the tangent modulus on the isochronous curve corresponding 
The Euler column formula is given as 

and the modified Euler 

Equations (59) to (61) 
resulting equation is 

pE n2E - = -  

formula is given as 

L 
3 

can be combined to eliminate 3 and ET. The 

For both the hyperbolic sine creep law and the power creep law, the time 
parameter is 

2 f'(E) g(t) 

P 1 - -  T~ or T~ = ($-) ii 
PE 

When t = tcr, then T~ = T ~ , ~ ~  or -rP = T ~ , ~ ~ ;  thus, the relation 
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Ts,cr = *p,cr = 1 (63) 

is the column failure criterion for the isochronous-tangent-modulus 
method. 

RESULTS AND DISCUSSION 

L 
3 
3 
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Calculations 

By using the hyperbolic sine creep law for the solutions of the 
H-section column and the rectangular column with linear stress distri- 
bution, critical lifetime parameters were calculated for a range of 
lateral-displacement parameters s ( 0 )  from less than 0.1 to about 10. 
These results are plotted in figure 2 which shows a comparison between 
the rectangular section and its equivalent H-section. For lateral- 
displacement parameters s ( 0 )  less or greater than those shown in fig- 
ure 2, the lifetime parameters are given by asymptotic formulas derived 
in the appendix. 
made by using the analyses with the power creep law for the equivalent 
H-section column and the rectangular-section column with linear stress 
distribution through the thickness. The values of n used were the 
odd integers from 3 to 9, and the range of displacement parameter 
corresponding to the elastic column with load was varied from about 0.001 
to 1. Results are given in figure 3.  

Calculations of critical time parameters were also 

W ( 0 )  

For rectangular-section columns with nonlinear stress distribution 
through the thickness, the system of differential equations (eqs . ( 5 3 )  
and (56)) was solved numerically on an I B M  type 704 electronic data proc- 
essing machine using the Runge-Kutta method. 
utiiized in this calculation. "he required numerical integrations were 
carried out by using Gaussian quadrature formulas with 10 stations 
through the thickness. The necessary quadrature coefficients and sta- 
tion locations were obtained from reference 13. Displacements and 
stresses were calculated as functions of the time parameter. The value 
of the time parameter at which the displacement rate became essentially 
infinite was taken as the critical time parameter. 

The power creep law was 

Comparisons Between Various Theories 

Based on Power Creep Law 

In figures 4 and 5 the critical time parameters for rectangular 
columns and nonlinear stress distribution are given as the circled and 
squared points, and these nonlinear-stress results are compared with 
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those for l inear  s t r e s s  and for  the equivalent H-section column. 
these calculations are based on the power creep l a w .  Also given as the 
uniform dash curve i s  an approximate nonlinear stress solution i n  which 
the  i n i t i a l  s t r e s s  dis t r ibut ion i s  not quite l inear .  The uniform dash 
curves were obtained from a single calculation of W as a function 
of Tp f o r  each value of P/PE s t a r t i ng  w i t h  l inear  i n i t i a l  s t r e s s  a t  
a very small value of W ( 0 )  (W(0) = 0.001). A s  an approximation, the 
result ing s t r e s s  conditions exis t ing when W reached a given value 
were assumed t o  be the i n i t i a l  conditions for  the par t icular  column 
star t ing out w i t h  a value of W(0) equal t o  tha t  given value of W .  
The approximation i s  very good except when both W(0) and n a re  
large.  

A l l  

L 
3 
3 
8 The r a t i o  of the c r i t i c a l  time parameter for  the nonlinear-stress 

solution t o  tha t  for  the l inear-s t ress  solution is  given i n  figure 6 
based on the power creep l a w .  
l a ted  by the more exact method discussed previously i n  which the i n i t i a l  
stresses a re  l inear .  The curves were a r b i t r a r i l y  fa i red  through the 
points. Except for  large values of n and W(0) the e f fec t  of the 
nonlinear s t r e s s  dis t r ibut ion on column creep l i f e  i s  negligible.  Thus, 
for  many cases an analysis based on the assumption of a l i nea r  s t r e s s  
dis t r ibut ion should be suff ic ient .  

The individual data points were calcu- 

Typical Stress  Distributions 

In  figure 7 are shown some typical  s t r e s s  dis t r ibut ions through 
the thickness of the rectangular-section column based on the power 
creep law. The symbol uB represents the difference between the s t r e s s  
i n  the column at a par t icular  value of and the average s t r e s s  on 
the column. 
bution, the curves are normalized w i t h  respect t o  the maximum value of 
uB calculated by elementary beam theory for  the value of W indicated. 
These particular s t r e s s  dis t r ibut ions were obtained for  W(0) = 0.001, 
and the dashed-line curves indicate the i n i t i a l  s t r e s s  dis t r ibut ion a t  
W(0) = 0.001, which i s  l inear .  

z/h 
I n  order t o  emphasize the deviations from a l inea r  d i s t r i -  

Column Lifetimes and Material Creep Data 

Comparisons were made t o  determine the correlation t o  be expected 
between column l ifetimes calculated with different  creep l a w s  matched 
t o  the same material creep curves. Constants for  both the hyperbolic 
sine law and the power law were obtained from compression creep data 
i n  reference 1 on 7073-T6 aluminum al loy a t  600O F. These constants 
are  l i s t ed  i n  table 1. Both creep l a w s  agree closely with the data 
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which a re  i n  the stress range from 4.5 t o  5.5 k s i .  
of these laws fo r  the hyperbolic sine l a w  t o  give the greater creep 
s t r a in  outside the s t r e s s  range of the data (e i ther  above or below). 

It i s  character is t ic  

Column l i fe t imes were calculated by using both creep l a w s  fo r  
rectangular-section columns w i t h  linear s t r e s s  dis t r ibut ion through the 
thickness, and the r e su l t s  are  given i n  table  2. The material creep 
data were i n  the s t r e s s  range from 4.5 t o  5.5 ksi,  as mentioned pre- 
viously; and the two calculations agree very closely for  average column 
stresses  between 4 and 3 ks i .  

For theoret ical  column creep analyses t o  be accurate, the creep 
law should be accurate throughout the range of the s t r e s s  which the 
column experiences. Data are not ordinarily available from which a 
creep l a w  can be formulated that i s  accurate throughout such a wide 
s t r e s s  range. 
limited material creep data are  available, the best  resu l t s  f o r  calcu- 
la ted l i fe t ime my  be obtained when the range of material creep data 
covers the average column stress or is  s l igh t ly  above it. 

The calculated resul ts  i n  table  2 suggest that when only 

Comparison Between Theory and Experiment 

Column stresses  for various creep l i fe t imes calculated from theory 
a re  compared w i t h  experiment i n  figures 8 t o  11. Four s e t s  of material 
and column data given i n  references 1 t o  4 were considered i n  t h i s  com- 
parison. The material creep data and column data have been screened so 
that  only those columns whose average stress f e l l  i n  a cer ta in  range 
were included. The s t r e s s  range for the column data was taken t o  be 
t h a t  between the highest stress i n  the corresponding material creep data 
and a value about two-thirds of the lowest s t r e s s  i n  the material data.  
A l l  the  available column t e s t s  i n  t h i s  range were included provided there 
w a s  more than one t e s t  for  a given value of 2/p. Material constants and 
the range of the data from which they were obtained are  given i n  table  1. 
The theories used fo r  the comparison include the rectangular-section 
column both w i t h  l inear  s t r e s s  distribution and w i t h  nonlinear s t r e s s  
dis t r ibut ion through the thickness. Also included i s  the isochronous- 
tangent-modulus method. Refinements i n  the theory have re la t ive ly  l i t t l e  
e f fec t  on the theoret ical  r e su l t s .  Furthermore, the refinements do not 
always lead t o  an improvement i n  the comparisons. In  many cases, the 
r e su l t s  obtained from the isochronous-tangent-modulus method appear t o  
be about as  good as  the resu l t s  obtained from the theoret ical  methods. 

CONCLUDING REMARKS 

A theoret ical  analysis has been made of idealized H-section and 
rectangular-section columns by the application of a creep variational 
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theorem. 
stress distributions through the thickness are considered. The solution 
for the case of nonlinear stress distribution utilizes a power creep 
law; the other solutions are given for both the power law and the hyper- 
bolic sine creep law. 

For the rectangular-section columns both linear and nonlinear 

Charts for critical lifetime parameters are given. 

Comparisons were made between the theoretical solutions for the 
rectangular column and previously published experimental data. The 
isochronous-tangent-modulus method was also included in the comparisons. 
The results indicate that the differences between the linear-stress and 
nonlinear-stress solutions are rather small, a linear-stress solution 
being sufficient in most cases. 
does not always improve the comparisons between theory and test and, 
thus, does not appear worthwhile at present. Finally, in many cases, 
the results obtained from the isochronous-tangent-modulus method were 
about as good as the results obtained from the more involved theoretical 
methods. 

Refinement in the stress distribution 
L 
3 
3 
8 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va., May 21, 1-959. 
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APPENDIX 
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ASYMTOTIC FORMULAS FOR EXTREME VALUES OF 

INITIAL LAa-DISPUCEMEW PARAMETER 

When the argument is sufficiently small, the modified Bessel func- 

tion Il(x) can be approximated by Il(x) 5 (ref. 14). The integrals 

in equations (20) and (36) can each be written as the sum of two inte- 
grals - one from s ( 0 )  or sl(0) to s* and another from s to m. 

If s* is small enough for the approximation for Il(x) to hold with fair 
accuracy, the following simplified expression for critical time results: 

-n- 

where s is replaced by s1 in the case of the idealized H-section 
column. Numerical calculations indicate that sufficient accuracy results 
when s* = 1. Approximate expressions for the critical lifetime param- 
eter are given for the idealized H-section column by 

and for the rectangular-section column by 

When the argument is large, the Bessel function approaches (see 
ref. 14) 

e* I1(x) = - F (A4 1 

The use of this approximation to calculate the lifetime parameter for 
H-section columns having large values of initial crookedness gives 
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Making the substitution z = x and integrating by parts gives 

The integral remaining in equation ( A 6 )  is 

where 1 - O ( S ~ ~ / ~ )  is the complementary error function. The asymptotic 

expansion for 1 - 0(s11/2) is 

Thus, the critical lifetime parameter becomes 

This approximation is small by less than 4 percent when 
is more accurate for larger values of 

s 1  = 10 and 

sl. 

For the rectangular-section column having large values of initial 
crookedness and linear stress distribution through the thickness, the 
approximate form for the critical lifetime parameter becomes 

The integral in the denominator can be approximated for  a very large 
valLe of 7 by 

. 
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A numerical integration with 
about 12 percent high and improves for larger values of 
tion (All) is substituted into equation (A10) and an integration by parts 
is carried out, the result is 

7 = 9.95 shows that this approximation is 
7. When equa- 

The integral in equation (A12) can be handled in the same manner as that 
in equation (A5). The result can be approximated as 

This expression is low by about 10 percent for s = 10. 
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TAELE 2 

COMPARISON BETWEEN CALCULATED LIFETIMES OF RECTANGULAR-SECTION 

COLUMNS FOR TWO DIFFERENT CREEP LAWS 

Linear stress distribution through thickness; material, 

7075-T6 aluminum alloy in compression at 600° F; 
stress range for material creep data, 4.5 to 5.5 ksi] 
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(a) Symbols for lateral displacement of middle surface of column. 
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(b) Idealized H-section column. 
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(c) Rectangular-section column. 

Figure 1.- Symbols for lateral displacement and coordinate systems. 
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Rectangular  s e c t i o n ,  
l inear stress d is t r ibut ion 

\ --- Equivalent H -sec t i on  \ 
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Figure 2.- Column lifetime parameter from variational theorem using 
hyperbolic sine creep law. 
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Figure 3.- Column lifetime parameter from variational theorem using 
power creep law. 
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theory for rectangular-section columns. Power creep law. 
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Figure 10.- Comparison between calculated and experimental lifetimes 
for rectangular-section columns of 2024-T4 aluminum alloy, as 
received. T = 350° F; hW, = 0.002862. 
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Figure 11.- Comparison between calculated and experimental lifetimes 
for rectangular-section columns of 2024-T4 aluminum alloy, as 
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